2023年四川統招專升本高等數學真題題型
【導讀】今天,四川省專升本網為大家帶來了2023年四川統招專升本高等數學真題題型,相信很多考生對此都比較關心這個問題,下面就一起來看看吧!
(一)函數、極限和連續
1.函數
(1)理解函數的概念:函數的定義,函數的表示法,分段函數。
(2)理解和掌握函數的簡單性質:單調性,奇偶性,有界性,周期性。
(3)了解反函數:反函數的定義,反函數的圖象。
(4)掌握函數的四則運算與復合運算。
(5)理解和掌握基本初等函數:冪函數,指數函數,對數函數,三角函數,反三角函數。
(6)了解初等函數的概念。
2.極限
(1)理解數列極限的概念:數列,數列極限的定義,能根據極限概念分析函數的變化趨勢。會求函數在一點處的左極限與右極限,了解函數在一點處極限存在的充分必要條件。
(2)了解數列極限的性質:唯一性,有界性,四則運算定理,夾逼定理,單調有界數列,極限存在定理,掌握極限的四則運算法則。
(3)理解函數極限的概念:函數在一點處極限的定義,左、右極限及其與極限的關系,x趨于無窮(x→∞,x→+∞,x→-∞)時函數的極限。
(4)掌握函數極限的定理:唯一性定理,夾逼定理,四則運算定理。
(5)理解無窮小量和無窮大量:無窮小量與無窮大量的定義,無窮小量與無窮大量的關系,無窮小量與無窮大量的性質,兩個無窮小量階的比較。
(6)熟練掌握用兩個重要極限求極限的方法。
3.連續
(1)理解函數連續的概念:函數在一點連續的定義,左連續和右連續,函數在一點連續的充分必要條件,函數的間斷點及其分類。
(2)掌握函數在一點處連續的性質:連續函數的四則運算,復合函數的連續性,反函數的連續性,會求函數的間斷點及確定其類型。
(3)掌握閉區間上連續函數的性質:有界性定理,最大值和最小值定理,介值定理(包括零點定理),會運用介值定理推證一些簡單命題。
(4)理解初等函數在其定義區間上連續,并會利用連續性求極限。
(二)一元函數微分學
1.導數與微分
(1)理解導數的概念及其幾何意義,了解可導性與連續性的關系,會用定義求函數在一點處的導數。
(2)會求曲線上一點處的切線方程與法線方程。
(3)熟練掌握導數的基本公式、四則運算法則以及復合函數的求導方法。
(4)掌握隱函數的求導法、對數求導法以及由參數方程所確定的函數的求導方法,會求分段函數的導數。
(5)理解高階導數的概念,會求簡單函數的n階導數。
(6)理解函數的微分概念,掌握微分法則,了解可微與可導的關系,會求函數的一階微分。
2.中值定理及導數的應用
(1)了解羅爾中值定理、拉格朗日中值定理及它們的幾何意義。
(2)熟練掌握洛必達法則求“0/0”、“∞/∞”、“0?∞”、“∞-∞”、“1∞”、“00”和“∞0”型未定式的極限方法。
(3)掌握利用導數判定函數的單調性及求函數的單調增、減區間的方法,會利用函數的增減性證明簡單的不等式。
(4)理解函數極值的概念,掌握求函數的極值和最大(小)值的方法,并且會解簡單的應用問題。
(5)會判定曲線的凹凸性,會求曲線的拐點。
(6)會求曲線的水平漸近線與垂直漸近線。
(三)一元函數積分學
1.不定積分
(1)理解原函數與不定積分概念及其關系,掌握不定積分性質,了解原函數存在定理。
(2)熟練掌握不定積分的基本公式。
(3)熟練掌握不定積分第一換元法,掌握第二換元法(限于三角代換與簡單的根式代換)。
(4)熟練掌握不定積分的分部積分法。
2.定積分
(1)理解定積分的概念與幾何意義,了解可積的條件。
(2)掌握定積分的基本性質。
(3)理解變上限的定積分是變上限的函數,掌握變上限定積分求導數的方法。
(4)掌握牛頓—萊布尼茨公式。
(5)掌握定積分的換元積分法與分部積分法。
(6)理解無窮區間廣義積分的概念,掌握其計算方法。
(7)掌握直角坐標系下用定積分計算平面圖形的面積。
【結尾】以上就是關于“2023年四川統招專升本高等數學真題題型”的全部內容了,更多關于四川省專升本相關資訊:如四川專升本成績查詢、考試科目、復習備考,試題題庫、報考條件、院校專業,院校動態等、敬請關注四川專升本考試網(www.o564.com)。

四川專升本聲明
(一)由于考試政策等各方面情況的不斷調整與變化,本網站所提供的考試信息僅供參考,請以權威部門公布的正式信息為準。
(二)本網站在文章內容來源出處標注為其他平臺的稿件均為轉載稿,免費轉載出于非商業性學習目的,版權歸原作者所有。如您對內容、版權等問題存在異議請于我們聯系,我們會及時處理。
文章來源于網絡,如有侵權,請聯系刪除
點擊繼續閱讀>>
掃碼登錄
掃碼關注“四川專升本”微信公眾號
即可查看余下內容
四川專升本報名指導入口
考生交流群
微信公眾號

掃一掃加入微信交流群
與考生自由互動、并且能直接與資深老師進行交流、解答。